Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Methods Mol Biol ; 2757: 123-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668964

RESUMO

Ctenophores are marine organisms attracting significant attention from evolutionary biology, molecular biology, and ecological research. Here, we describe an easy and affordable setup to maintain a stable culture of the ctenophore Mnemiopsis leidyi. The challenging delicacy of the lobate ctenophores can be met by monitoring the water quality, providing the right nutrition, and adapting the handling and tank set-up to their fragile gelatinous body plan. Following this protocol allows stable laboratory lines, a continuous supply of embryos for molecular biological studies, and independence from population responses to environmental fluctuations.


Assuntos
Ctenóforos , Animais , Ctenóforos/fisiologia
2.
Evol Dev ; : e12472, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390763

RESUMO

Nervous system is one of the key adaptations underlying the evolutionary success of the majority of animal groups. Ctenophores (or comb jellies) are gelatinous marine invertebrates that were probably the first lineage to diverge from the rest of animals. Due to the key phylogenetic position and multiple unique adaptations, the noncentralized nervous system of comb jellies has been in the center of the debate around the origin of the nervous system in the animal kingdom and whether it happened only once or twice. Here, we discuss the latest findings in ctenophore neuroscience and multiple challenges on the way to build a clear evolutionary picture of the origin of the nervous system.

3.
Front Genet ; 13: 970314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276958

RESUMO

The study of evolution and speciation in non-model systems provides us with an opportunity to expand our understanding of biodiversity in nature. Connectivity studies generally focus on species with obvious boundaries to gene flow, but in open-ocean environments, such boundaries are difficult to identify. Due to the lack of obvious boundaries, speciation and population subdivision in the pelagic environment remain largely unexplained. Comb jellies (Phylum Ctenophora) are mostly planktonic gelatinous invertebrates, many of which are considered to have freely interbreeding distributions worldwide. It is thought that the lobate ctenophore Bolinopsis infundibulum is distributed throughout cooler northern latitudes and B. vitrea warmer. Here, we examined the global population structure for species of Bolinopsis with genetic and morphological data. We found distinct evolutionary patterns within the genus, where B. infundibulum had a broad distribution from northern Pacific to Atlantic waters despite many physical barriers, while other species were geographically segregated despite few barriers. Divergent patterns of speciation within the genus suggest that oceanic currents, sea-level, and geological changes over time can act as either barriers or aids to dispersal in the pelagic environment. Further, we used population genomic data to examine evolution in the open ocean of a distinct lineage of Bolinopsis ctenophores from the North Eastern Pacific. Genetic information and morphological observations validated this as a separate species, Bolinopsis microptera, which was previously described but has recently been called B. infundibulum. We found that populations of B. microptera from California were in cytonuclear discordance, which indicates a secondary contact zone for previously isolated populations. Discordance at this scale is rare, especially in a continuous setting.

4.
Curr Biol ; 32(23): 5144-5152.e6, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36272402

RESUMO

Comb plates are large ciliary structures uniquely seen in comb jellies (ctenophores).1,2,3 A comb plate is constructed from tens of thousands of cilia that are bundled together by structures called compartmenting lamellae (CLs).4,5,6 We previously reported the first component of the CL, CTENO64, and found that it was specifically found in ctenophores and was essential for the determination of ciliary orientation.3 However, CTENO64 is localized only in the proximal region of the CL; therefore, the molecular architecture of the CL over the entire length of a comb plate has not been elucidated. Here, we identified a second CL component, CTENO189. This ctenophore-specific protein was present in the distal region of comb plates, with a localization clearly segregated from CTENO64. Knockdown of the CTENO189 gene using morpholino antisense oligonucleotides resulted in complete loss of CLs in the distal region of comb plates but did not affect the formation of comb plates or the orientation of each cilium. However, the hexagonal distribution of cilia was disarranged, and the metachronal coordination of comb plates along a comb row was lost in the CTENO189 morphants. The morphant comb plate showed asymmetric ciliary-type movement in normal seawater, and in a high-viscosity solution, it could not maintain the normal waveforms but showed a symmetric flagellar-type movement. Our findings demonstrated two distinct compartments of a comb plate: the proximal CL as the building foundation that rigidly fixes the ciliary orientation, and the distal CL that reinforces the elastic connection among cilia to overcome the hydrodynamic drag of giant multiciliary plates.


Assuntos
Ctenóforos , Animais , Ctenóforos/genética
5.
Data Brief ; 44: 108493, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35966942

RESUMO

This data article includes a qualitative and quantitative description of the gelatinous macrozooplankton community of the North Sea during January-February 2021. Sampling was conducted during the 1st quarter International Bottom Trawl Survey (IBTS) on board the Danish R/V DANA (DTU Aqua Denmark) and the Swedish R/V Svea (SLU Sweden), as part of the ichthyoplankton investigation during night-time. A total of 147 stations were investigated in the western, central and eastern North Sea as well as the Skagerrak and Kattegat. Sampling was conducted with a 13 m long Midwater Ring Net (MIK net, Ø 2 m, mesh size 1.6 mm, cod end with smaller mesh size of 500 µm), equipped with a flow meter. The MIK net was deployed in double oblique hauls from the surface to c. 5 m above the sea floor [1,2]. Samples were visually analysed unpreserved on a light table and/or with a stereomicroscope or magnifying lamp within 2 hours after catch. A total of 13,510 individuals were counted/sized. Twelve gelatinous macrozooplankton species or genera were encountered, namely the hydrozoan Aequorea vitrina, Aglantha digitale, Clytia spp., Leuckartiara octona, Tima bairdii, Muggiaea atlantica; the scyphozoans Cyanea capillata and Cyanea lamarckii and the ctenophores Beroe spp., Bolinopsis infundibulum, Mnemiopsis leidyi, Pleurobrachia pileus. Abundance data are presented on a volume specific (m-3) and area specific (m-2) basis. Size data have been used to estimate wet weights based on published length-weight regressions (see Table 1). For the groups i) hydrozoan jellyfish, ii) scyphozoan jellyfish, iii) ctenophores, as well as iv) grouped gelatinous macrozooplankton, spatial weight specific distribution patterns are presented. This unpublished dataset contributes baseline information about the gelatinous macrozooplankton diversity and its specific distribution patterns in the extended North Sea area during winter (January-February) 2021. These data can be an important contribution to address global change impacts on marine systems, especially considering gelatinous macrozooplankton abundance changes in relation to anthropogenic stressors.

6.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34545398

RESUMO

Here, we present a karyotype, a chromosome-scale genome assembly, and a genome annotation from the ctenophore Hormiphora californensis (Ctenophora: Cydippida: Pleurobrachiidae). The assembly spans 110 Mb in 44 scaffolds and 99.47% of the bases are contained in 13 scaffolds. Chromosome micrographs and Hi-C heatmaps support a karyotype of 13 diploid chromosomes. Hi-C data reveal three large heterozygous inversions on chromosome 1, and one heterozygous inversion shares the same gene order found in the genome of the ctenophore Pleurobrachia bachei. We find evidence that H. californensis and P. bachei share thirteen homologous chromosomes, and the same karyotype of 1n = 13. The manually curated PacBio Iso-Seq-based genome annotation reveals complex gene structures, including nested genes and trans-spliced leader sequences. This chromosome-scale assembly is a useful resource for ctenophore biology and will aid future studies of metazoan evolution and phylogenetics.


Assuntos
Ctenóforos , Animais , Cromossomos/genética , Ctenóforos/genética , Ordem dos Genes , Genoma , Cariótipo , Cariotipagem , Anotação de Sequência Molecular
7.
Sci Total Environ ; 734: 139471, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464382

RESUMO

The translocation of non-indigenous species (NIS) around the world, especially in marine systems, is increasingly being recognized as a matter of concern. Species translocations have been shown to lead to wide ranging changes in food web structure and functioning. In addition to the direct effects of NIS, they could facilitate the accumulation or translocation of bacteria as part of their microbiomes. The Baltic Sea harbours many non-indigenous species, with most recent detection of the jellyfish Blackfordia virginica and the comb jelly Mnemiopsis leidyi in the low saline southwestern Baltic Sea. In this study, we used a multidisciplinary approach and investigated three gelatinous zooplankton species that co-occur in the same environment and feed on similar zooplankton food sources but show different histories of origin. The aim was to conduct a comparative microbiome analysis of indigenous and non-indigenous gelatinous zooplankton species in the low-saline southwestern Baltic Sea. Next-generation 16S rRNA marker gene sequencing of the V1/V2 region was employed to study the bacterial microbiome compositions. All tested species showed significant differences in their microbiome compositions (one way ANOSIM, R = 1, P < 0.008) with dissimilarities ranging from 85 to 92%. The indigenous jellyfish Aurelia aurita showed the highest bacterial operational taxonomic unit (OTU) richness. The overall differentiation between microbiomes was driven by eight indicator OTUs, which included Mycoplasma and Vibrio species. These bacteria can be problematic, as they include known pathogenic strains that are relevant to human health and aquaculture activities. Our results suggest that the impact assessment of NIS should consider potential pathogenic bacteria, enriched in the environment due to invasion, as potential risks to aquaculture activities.


Assuntos
Microbiota , Animais , RNA Ribossômico 16S , Cifozoários , Vibrio , Zooplâncton
8.
Curr Biol ; 29(20): 3510-3516.e4, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31607532

RESUMO

Ctenophores, or comb jellies, are one of the earliest branching basal metazoan groups, whose phylogenetic position continues to be controversial. They have eight rows of iridescent structures, called comb plates, which are huge multiciliated paddle-like structures used for locomotion and uniquely found in this group of animals [1]. Despite a number of morphological and physiological studies over the past 50 years, the molecular nature of comb plates remains completely unknown. Here, we identified a protein CTENO64 that is specifically localized in the comb plates. This protein is only found in ctenophores and not in other animals or eukaryotic species that possess multiciliary cells or tissues. It is localized to regions, called compartmenting lamella (CL), which are uniquely seen in ctenophore multicilia, connecting adjacent cilia in the comb plates. Knockdown of the CTENO64 gene did not affect the formation of comb plates but caused the loss or misformation of CLs and the disruption of ciliary orientation, resulting in aberrant and non-planar waveforms in the mid-distal region of the comb plates. We propose that CLs have been convergently acquired in ctenophores to overcome the hydrodynamic constraints of possessing extremely long multicilia. Our findings provide the initial step in unveiling the molecular structure and evolutionary significance of ciliary comb plates and shed light not only on the hidden biology of ctenophores but also on the unique evolutionary pathway of these animals. VIDEO ABSTRACT.


Assuntos
Ctenóforos/fisiologia , Animais , Cílios/fisiologia , Ctenóforos/genética , Locomoção/genética
9.
Data Brief ; 25: 104186, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31388520

RESUMO

This article describes the biodiversity of gelatinous macrozooplankton and presents quantitative field data on their community composition and distribution pattern in the North Sea during August 2018. The data set consists of jellyfish and comb jelly species abundance estimates which are based on sampling at 62 stations in the central and southern North Sea covering Danish waters, the German Bight, waters off the Dutch coast as well as the western North Sea off the UK coast and the central North Sea. The sampling gear was a 13 m long MIK-net (modified Methot Isaac Kidd net; Ø 2 m, mesh size 1 mm, mesh size cod end 500 µm) deployed in double oblique hauls from the surface to 5 m above the sea floor. Samples were visually analysed for gelatinous macrozooplankton (>2 mm) using a light table. Samples were processed within 1 hour after catch. In total, 6239 gelatinous macrozooplankton specimen were caught. Spatial distribution pattern described in this article include the jellyfish species Aequorea sp., Aurelia aurita, Beroe sp., Chrysaora hysoscella, Clytia hemisphaerica, Cyanea capillata, Cyanea lamarckii, Eirene viridula, Leuckartiara octona, Melicertum octocostatum, Obelia sp. as well as the comb jelly species Mnemiopsis leidyi and Pleurobrachia pileus. Further, size frequency distributions of abundant taxa are provided together with a summary of abundances as well as average, maximum and minimum sizes of all species. This dataset has not previously been published and is of high value for comparison with other - and future - investigations of gelatinous macrozooplankton in the North Sea. The data were obtained during an internationally coordinated, standard fishery survey which is carried out annually (Quarter 3 - North Sea - International Bottom Trawl Survey - Q3 NS-IBTS). The gained information could be used as baseline for a monitoring of potential changes in gelatinous macrozooplankton abundances to address the long standing question if gelatinous zooplankton are on the rise due to climate change induced stressors.

10.
Glob Chang Biol ; 24(3): 1164-1174, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29135067

RESUMO

Species establishing outside their natural range, negatively impacting local ecosystems, are of increasing global concern. They often display life-history features characteristic for r-selected populations with fast growth and high reproduction rates to achieve positive population growth rates (r) in invaded habitats. Here, we demonstrate substantially earlier maturation at a 2 orders of magnitude lower body mass at first reproduction in invasive compared to native populations of the comb jelly Mnemiopsis leidyi. Empirical results are corroborated by a theoretical model for competing life-history traits that predicts maturation at the smallest possible size to optimize r, while individual lifetime reproductive success (R0 ), optimized in native populations, is near constant over a large range of intermediate maturation sizes. We suggest that high variability in reproductive tactics in native populations is an underappreciated determinant of invasiveness, acting as substrate upon which selection can act during the invasion process.


Assuntos
Ctenóforos/fisiologia , Espécies Introduzidas , Animais , Ecossistema , Oceanos e Mares , Crescimento Demográfico , Reprodução
11.
J Exp Biol ; 218(Pt 4): 592-7, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25696822

RESUMO

Recent phylogenetic analyses resulting from collection of whole genome data suggest that ctenophores, or comb jellies, are sister to all other animals. Even before publication, this result prompted discussion among researchers. Here, I counter common criticisms raised about this result and show that assumptions placing sponges as the basal-most extant animal lineage are based on limited evidence and questionable premises. For example, the idea that sponges are simple and the reported similarity of sponge choanocytes to Choanflagellata do not provide useful characters for determining the positions of sponges within the animal tree. Intertwined with discussion of basal metazoan phylogeny is consideration of the evolution of neuronal systems. Recent data show that neural systems of ctenophores are vastly different from those of other animals and use different sets of cellular and genetic mechanisms. Thus, neural systems appear to have at least two independent origins regardless of whether ctenophores or sponges are the earliest branching extant animal lineage.


Assuntos
Ctenóforos/classificação , Filogenia , Poríferos/classificação , Animais , Evolução Biológica , Coanoflagelados , Ctenóforos/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Poríferos/citologia , Poríferos/fisiologia
12.
Genome Biol Evol ; 6(8): 1964-71, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25062921

RESUMO

Opsins mediate light detection in most animals, and understanding their evolution is key to clarify the origin of vision. Despite the public availability of a substantial collection of well-characterized opsins, early opsin evolution has yet to be fully understood, in large part because of the high level of divergence observed among opsins belonging to different subfamilies. As a result, different studies have investigated deep opsin evolution using alternative data sets and reached contradictory results. Here, we integrated the data and methods of three, key, recent studies to further clarify opsin evolution. We show that the opsin relationships are sensitive to outgroup choice; we generate new support for the existence of Rhabdomeric opsins in Cnidaria (e.g., corals and jellyfishes) and show that all comb jelly opsins belong to well-recognized opsin groups (the Go-coupled opsins or the Ciliary opsins), which are also known in Bilateria (e.g., humans, fruit flies, snails, and their allies) and Cnidaria. Our results are most parsimoniously interpreted assuming a traditional animal phylogeny where Ctenophora are not the sister group of all the other animals.


Assuntos
Cnidários/genética , Ctenóforos/genética , Opsinas/genética , Animais , Cnidários/fisiologia , Ctenóforos/fisiologia , Evolução Molecular , Transdução de Sinal Luminoso , Opsinas/metabolismo , Filogenia
13.
Biota neotrop. (Online, Ed. port.) ; 7(3): 341-350, 2007. ilus, tab
Artigo em Português | LILACS | ID: lil-477701

RESUMO

Embora abundantes e importantes ecologicamente no meio marinho, os ctenóforos do litoral brasileiro têm sido pouco estudados. O presente estudo tem por objetivo prover informações para auxiliar na identificação desses organismos. Para tal, são descritos métodos de fixação e documentação fotográfica dos ctenóforos. A terminologia referente ao grupo, em língua portuguesa, é apresentada na forma de um glossário. Além disso, as características que distinguem as treze espécies registradas para águas brasileiras são organizadas em uma chave de identificação. A complementação da identificação pode ser feita pela literatura indicada para cada espécie.


Although ctenophores are abundant and ecologically important in the marine environment, they are poorly known in the Brazilian coast. The present study is a taxonomic key for the ctenophores from the Brazilian coast. It aims to help students and non-specialist researchers with the identification of those organisms. Collecting, preserving and photographing methods are described. Characters that distinguish the thirteen species registered in Brazilian marine territories are presented.


Assuntos
Ctenóforos/anatomia & histologia , Ctenóforos/classificação , Fauna Bentônica/análise , Fauna Bentônica/classificação , Ecossistema/análise , Ecossistema/classificação , Ecossistema/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...